Skip to main content

1
RESULTS
rss


Media Type
1
texts
Year
1
1996
Collection
Creator
1
alexander v sardo infirri
Language
1
English
SHOW DETAILS
up-solid down-solid
eye
Title
Date Favorited
Creator
Arxiv.org
texts
eye 29
favorite 1
comment 0
Let $\Gamma$ be a finite group acting linearly on $\C^n$, freely outside the origin, and let $N$ be the number of conjugacy classes of $\Gamma$ minus one. A construction of Kronheimer of moduli spaces $X_\zeta$ of translation-invariant $\Gamma$-equivariant instantons on $\C^2$ is generalised to $\C^n$. The moduli spaces $X_\zeta$ depend on a parameter $\zeta\in\Q^N$. The following results are proved: for $\zeta=0$, $X_0$ is isomorphic to $\C^n/\Gamma$; if $\zeta\neq 0$, the natural maps...
Source: http://arxiv.org/abs/alg-geom/9610004v1